Developer Documentation
🛰️ While AI systems drink from the poisoned well of web scraping, our constellation provides pure intelligence from 800km above Earth. Replace search APIs with satellite-verified ground truth that users actually trust.
Quick Start
Break free from the opinion economy. Replace web search APIs with electromagnetic reality:
# Stop hallucinations with physics-based verification
curl -X POST -H 'Content-Type: application/json' -H 'Authorization: Bearer YOUR_API_KEY' http://api.memories.dev/v1/fact-verify -d '{"claim": "This embedding represents urban features accurately", "lat": 12.9716, "lon": 77.5946}'
# Response: 99.7% confidence vs 60% web search reliability
# Replace the entire web search stack with satellite truth
curl -X GET -H 'Authorization: Bearer YOUR_API_KEY' "http://api.memories.dev/v1/unified-truth?lat=12.9716&lon=77.5946&verify=true"
# Cryptographic proof included with every response
LBVM Earth Engine Integration
🎯 Live satellite data streaming with GPU-accelerated band presets. Connect directly to our Earth Engine:
# Get available band presets and render modes
curl -X GET https://lbvm.vortx.ai/v2/earth-engine/presets
# Response includes true_color, false_color, vegetation_health, thermal_analysis presets
# True color satellite imagery (Sentinel-2 B4/B3/B2)
curl -X GET "https://lbvm.vortx.ai/v2/earth-engine/embedding?lat=12.9716&lon=77.5946&band_type=optical&render_mode=true_color"
# False color infrared (Sentinel-2 B8/B4/B3) - reveals vegetation health
curl -X GET "https://lbvm.vortx.ai/v2/earth-engine/embedding?lat=12.9716&lon=77.5946&red_band=B8&green_band=B4&blue_band=B3&render_mode=false_color"
# NDVI vegetation analysis - pure GPU acceleration
curl -X GET "https://lbvm.vortx.ai/v2/earth-engine/embedding?lat=12.9716&lon=77.5946&band_type=ndvi&render_mode=enhanced"
🚀 All endpoints support pure GPU mode for real-time processing
Authentication
Join the revolution against unreliable AI. Get your API key and build the most trusted system:
Authorization: Bearer YOUR_API_KEY
AI Integration Examples
🚀 Transform your AI applications with satellite-verified intelligence. Here's how developers integrate Vortx APIs:
GenAI Training Data Agent
# Python: AI agent for generating training datasets
from memories import MemoriesClient
import openai
client = MemoriesClient(api_key="your_key")
def genai_training_agent(location, model_type):
# Get satellite-verified training context
training_data = client.get_training_context(
location=location,
include_spectral_bands=True,
include_physics_labels=True,
include_embedding_validation=True
)
# Generate training dataset with physics supervision
prompt = f"""
Model Type: {model_type}
PHYSICS-BASED TRAINING DATA:
- Spectral Signatures: {training_data.spectral_data} (64-band LBVM)
- Physics Labels: {training_data.physics_labels}
- Embedding Validation: {training_data.embedding_scores}
- Ground Truth Confidence: {training_data.confidence}% (vs 60% web labels)
Generate synthetic training examples based on this physics-verified intelligence.
"""
response = openai.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content
# Usage: Generate high-quality AI training data
dataset = genai_training_agent(
"123 Training Location, Bangalore",
"computer-vision-foundation-model"
)
Travel Planning AI
# JavaScript: AI travel planner with satellite context
const MemoriesClient = require('@memories/sdk');
const client = new MemoriesClient(process.env.MEMORIES_API_KEY);
async function aiTravelPlanner(destination, dates) {
// Get real-time satellite intelligence
const satelliteContext = await client.getLocationIntelligence({
location: destination,
dates: dates,
include_weather_patterns: true,
include_infrastructure: true,
include_safety_metrics: true
});
// Stream into your LLM
const travelPlan = await yourLLM.generatePlan({
destination,
dates,
verifiedContext: satelliteContext, // Satellite-verified ground truth
confidence: satelliteContext.confidence // Typically 99.7%
});
return {
plan: travelPlan,
satelliteProof: satelliteContext.blockchain_anchor,
trustScore: satelliteContext.confidence
};
}
RLHF Reward Modeling RAG System
# Python: RAG system with satellite-verified environmental data
from memories import MemoriesClient
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
client = MemoriesClient(api_key="your_key")
class SatelliteRAG:
def __init__(self):
self.embeddings = OpenAIEmbeddings()
self.vectorstore = FAISS.from_texts([], self.embeddings)
def ingest_satellite_intelligence(self, region):
# Get 50+ years of verified satellite data
historical_data = client.get_environmental_timeline(
region=region,
start_year=1970, # Since 1970 in AI memory
include_predictions=True # 'What-if' futures
)
# Add to vector database with verification
for data_point in historical_data:
self.vectorstore.add_texts(
[data_point.content],
metadatas=[{
'confidence': data_point.confidence,
'satellite_proof': data_point.blockchain_anchor,
'date': data_point.timestamp
}]
)
def query_with_satellite_truth(self, query):
# Retrieve satellite-verified context
docs = self.vectorstore.similarity_search(query, k=5)
# Only use high-confidence satellite data (>95%)
verified_docs = [d for d in docs
if d.metadata['confidence'] > 0.95]
return self.generate_response_with_proof(query, verified_docs)
SDKs & Libraries
Production-ready SDKs for every major AI development stack:
# Python: Replace OpenAI's web search with satellite intelligence
pip install memories-sdk
# JavaScript/Node.js: Drop-in replacement for unreliable APIs
npm install @memories/sdk
# Build the most trusted AI system
from memories import MemoriesClient
client = MemoriesClient(api_key="your_key")
# 99.7% accuracy vs 60% web search reliability
intel = client.get_verified_context(lat=12.97, lon=77.59)
Band Presets & GPU Acceleration
Available band combinations for different analysis types:
{
"sentinel2_true_color": { "red": "B4", "green": "B3", "blue": "B2" },
"sentinel2_false_color": { "red": "B8", "green": "B4", "blue": "B3" },
"vegetation_health": { "red": "NDVI", "green": "EVI", "blue": "SAVI" },
"thermal_analysis": { "red": "B10", "green": "B11", "blue": "B4" }
}
• band_types
: optical, thermal, sar, ndvi, elevation
• render_modes
: true_color, false_color, enhanced, scientific
• gpu_acceleration
: true (pure GPU processing)
Response Format
Every response includes cryptographic proof that web APIs can't match:
• confidence
: Physics-based reliability (typically 0.97+ vs web's 0.6)
• satellite_proof
: Sensor type, orbit pass, and exact timestamp
• blockchain_anchor
: Immutable verification record
• web_api_comparison
: Why satellite data contradicts web sources